EOS/src/akkudoktoreos/prediction/elecpriceakkudoktor.py

256 lines
10 KiB
Python
Raw Normal View History

"""Retrieves and processes electricity price forecast data from Akkudoktor.
This module provides classes and mappings to manage electricity price data obtained from the
Akkudoktor API, including support for various electricity price attributes such as temperature,
humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPriceDataRecord`
format, enabling consistent access to forecasted and historical electricity price attributes.
"""
2025-01-08 17:24:09 +01:00
from typing import Any, List, Optional, Union
Fix2 config and predictions revamp. (#281) measurement: - Add new measurement class to hold real world measurements. - Handles load meter readings, grid import and export meter readings. - Aggregates load meter readings aka. measurements to total load. - Can import measurements from files, pandas datetime series, pandas datetime dataframes, simple daetime arrays and programmatically. - Maybe expanded to other measurement values. - Should be used for load prediction adaptions by real world measurements. core/coreabc: - Add mixin class to access measurements core/pydantic: - Add pydantic models for pandas datetime series and dataframes. - Add pydantic models for simple datetime array core/dataabc: - Provide DataImport mixin class for generic import handling. Imports from JSON string and files. Imports from pandas datetime dataframes and simple datetime arrays. Signature of import method changed to allow import datetimes to be given programmatically and by data content. - Use pydantic models for datetime series, dataframes, arrays - Validate generic imports by pydantic models - Provide new attributes min_datetime and max_datetime for DataSequence. - Add parameter dropna to drop NAN/ None values when creating lists, pandas series or numpy array from DataSequence. config/config: - Add common settings for the measurement module. predictions/elecpriceakkudoktor: - Use mean values of last 7 days to fill prediction values not provided by akkudoktor.net (only provides 24 values). prediction/loadabc: - Extend the generic prediction keys by 'load_total_adjusted' for load predictions that adjust the predicted total load by measured load values. prediction/loadakkudoktor: - Extend the Akkudoktor load prediction by load adjustment using measured load values. prediction/load_aggregator: - Module removed. Load aggregation is now handled by the measurement module. prediction/load_corrector: - Module removed. Load correction (aka. adjustment of load prediction by measured load energy) is handled by the LoadAkkudoktor prediction and the generic 'load_mean_adjusted' prediction key. prediction/load_forecast: - Module removed. Functionality now completely handled by the LoadAkkudoktor prediction. utils/cacheutil: - Use pydantic. - Fix potential bug in ttl (time to live) duration handling. utils/datetimeutil: - Added missing handling of pendulum.DateTime and pendulum.Duration instances as input. Handled before as datetime.datetime and datetime.timedelta. utils/visualize: - Move main to generate_example_report() for better testing support. server/server: - Added new configuration option server_fastapi_startup_server_fasthtml to make startup of FastHTML server by FastAPI server conditional. server/fastapi_server: - Add APIs for measurements - Improve APIs to provide or take pandas datetime series and datetime dataframes controlled by pydantic model. - Improve APIs to provide or take simple datetime data arrays controlled by pydantic model. - Move fastAPI server API to v1 for new APIs. - Update pre v1 endpoints to use new prediction and measurement capabilities. - Only start FastHTML server if 'server_fastapi_startup_server_fasthtml' config option is set. tests: - Adapt import tests to changed import method signature - Adapt server test to use the v1 API - Extend the dataabc test to test for array generation from data with several data interval scenarios. - Extend the datetimeutil test to also test for correct handling of to_datetime() providing now(). - Adapt LoadAkkudoktor test for new adjustment calculation. - Adapt visualization test to use example report function instead of visualize.py run as process. - Removed test_load_aggregator. Functionality is now tested in test_measurement. - Added tests for measurement module docs: - Remove sphinxcontrib-openapi as it prevents build of documentation. "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema for t in schema["anyOf"]: KeyError: 'anyOf'" Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00
import numpy as np
2025-01-08 17:24:09 +01:00
import pandas as pd
import requests
2025-01-07 01:09:07 +01:00
from pydantic import ValidationError
2025-01-07 00:30:53 +01:00
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticBaseModel
2025-01-08 17:24:09 +01:00
from akkudoktoreos.prediction.elecpriceabc import ElecPriceProvider
2025-01-07 00:07:56 +01:00
from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
logger = get_logger(__name__)
class AkkudoktorElecPriceMeta(PydanticBaseModel):
2025-01-02 14:49:31 +01:00
start_timestamp: str
end_timestamp: str
start: str
end: str
class AkkudoktorElecPriceValue(PydanticBaseModel):
start_timestamp: int
end_timestamp: int
start: str
end: str
marketprice: float
unit: str
marketpriceEurocentPerKWh: float
class AkkudoktorElecPrice(PydanticBaseModel):
meta: AkkudoktorElecPriceMeta
values: List[AkkudoktorElecPriceValue]
class ElecPriceAkkudoktor(ElecPriceProvider):
"""Fetch and process electricity price forecast data from Akkudoktor.
ElecPriceAkkudoktor is a singleton-based class that retrieves electricity price forecast data
from the Akkudoktor API and maps it to `ElecPriceDataRecord` fields, applying
any necessary scaling or unit corrections. It manages the forecast over a range
of hours into the future and retains historical data.
Attributes:
hours (int, optional): Number of hours in the future for the forecast.
historic_hours (int, optional): Number of past hours for retaining data.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
_request_forecast(): Fetches the forecast from the Akkudoktor API.
_update_data(): Processes and updates forecast data from Akkudoktor in ElecPriceDataRecord format.
"""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the Akkudoktor provider."""
return "ElecPriceAkkudoktor"
@classmethod
def _validate_data(cls, json_str: Union[bytes, Any]) -> AkkudoktorElecPrice:
"""Validate Akkudoktor Electricity Price forecast data."""
try:
akkudoktor_data = AkkudoktorElecPrice.model_validate_json(json_str)
except ValidationError as e:
error_msg = ""
for error in e.errors():
field = " -> ".join(str(x) for x in error["loc"])
message = error["msg"]
error_type = error["type"]
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
logger.error(f"Akkudoktor schema change: {error_msg}")
raise ValueError(error_msg)
return akkudoktor_data
@cache_in_file(with_ttl="1 hour")
def _request_forecast(self) -> AkkudoktorElecPrice:
"""Fetch electricity price forecast data from Akkudoktor API.
This method sends a request to Akkudoktor's API to retrieve forecast data for a specified
date range. The response data is parsed and returned as JSON for further processing.
Returns:
dict: The parsed JSON response from Akkudoktor API containing forecast data.
Raises:
ValueError: If the API response does not include expected `electricity price` data.
2025-01-07 18:29:50 +01:00
Todo:
- add the file cache again.
"""
source = "https://api.akkudoktor.net"
2025-01-07 00:07:56 +01:00
assert self.start_datetime # mypy fix
# Try to take data from 5 weeks back for prediction
date = to_datetime(self.start_datetime - to_duration("35 days"), as_string="YYYY-MM-DD")
2025-01-02 14:49:31 +01:00
last_date = to_datetime(self.end_datetime, as_string="YYYY-MM-DD")
url = f"{source}/prices?start={date}&end={last_date}&tz={self.config.general.timezone}"
Fix2 config and predictions revamp. (#281) measurement: - Add new measurement class to hold real world measurements. - Handles load meter readings, grid import and export meter readings. - Aggregates load meter readings aka. measurements to total load. - Can import measurements from files, pandas datetime series, pandas datetime dataframes, simple daetime arrays and programmatically. - Maybe expanded to other measurement values. - Should be used for load prediction adaptions by real world measurements. core/coreabc: - Add mixin class to access measurements core/pydantic: - Add pydantic models for pandas datetime series and dataframes. - Add pydantic models for simple datetime array core/dataabc: - Provide DataImport mixin class for generic import handling. Imports from JSON string and files. Imports from pandas datetime dataframes and simple datetime arrays. Signature of import method changed to allow import datetimes to be given programmatically and by data content. - Use pydantic models for datetime series, dataframes, arrays - Validate generic imports by pydantic models - Provide new attributes min_datetime and max_datetime for DataSequence. - Add parameter dropna to drop NAN/ None values when creating lists, pandas series or numpy array from DataSequence. config/config: - Add common settings for the measurement module. predictions/elecpriceakkudoktor: - Use mean values of last 7 days to fill prediction values not provided by akkudoktor.net (only provides 24 values). prediction/loadabc: - Extend the generic prediction keys by 'load_total_adjusted' for load predictions that adjust the predicted total load by measured load values. prediction/loadakkudoktor: - Extend the Akkudoktor load prediction by load adjustment using measured load values. prediction/load_aggregator: - Module removed. Load aggregation is now handled by the measurement module. prediction/load_corrector: - Module removed. Load correction (aka. adjustment of load prediction by measured load energy) is handled by the LoadAkkudoktor prediction and the generic 'load_mean_adjusted' prediction key. prediction/load_forecast: - Module removed. Functionality now completely handled by the LoadAkkudoktor prediction. utils/cacheutil: - Use pydantic. - Fix potential bug in ttl (time to live) duration handling. utils/datetimeutil: - Added missing handling of pendulum.DateTime and pendulum.Duration instances as input. Handled before as datetime.datetime and datetime.timedelta. utils/visualize: - Move main to generate_example_report() for better testing support. server/server: - Added new configuration option server_fastapi_startup_server_fasthtml to make startup of FastHTML server by FastAPI server conditional. server/fastapi_server: - Add APIs for measurements - Improve APIs to provide or take pandas datetime series and datetime dataframes controlled by pydantic model. - Improve APIs to provide or take simple datetime data arrays controlled by pydantic model. - Move fastAPI server API to v1 for new APIs. - Update pre v1 endpoints to use new prediction and measurement capabilities. - Only start FastHTML server if 'server_fastapi_startup_server_fasthtml' config option is set. tests: - Adapt import tests to changed import method signature - Adapt server test to use the v1 API - Extend the dataabc test to test for array generation from data with several data interval scenarios. - Extend the datetimeutil test to also test for correct handling of to_datetime() providing now(). - Adapt LoadAkkudoktor test for new adjustment calculation. - Adapt visualization test to use example report function instead of visualize.py run as process. - Removed test_load_aggregator. Functionality is now tested in test_measurement. - Added tests for measurement module docs: - Remove sphinxcontrib-openapi as it prevents build of documentation. "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema for t in schema["anyOf"]: KeyError: 'anyOf'" Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00
response = requests.get(url)
logger.debug(f"Response from {url}: {response}")
response.raise_for_status() # Raise an error for bad responses
akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.general.timezone)
return akkudoktor_data
2025-01-07 00:30:53 +01:00
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
mean = data.mean()
std = data.std()
lower_bound = mean - sigma * std
upper_bound = mean + sigma * std
capped_data = data.clip(min=lower_bound, max=upper_bound)
return capped_data
def _predict_ets(self, history: np.ndarray, seasonal_periods: int, hours: int) -> np.ndarray:
2025-01-07 00:30:53 +01:00
clean_history = self._cap_outliers(history)
model = ExponentialSmoothing(
clean_history, seasonal="add", seasonal_periods=seasonal_periods
).fit()
return model.forecast(hours)
2025-01-07 00:07:56 +01:00
def _predict_median(self, history: np.ndarray, hours: int) -> np.ndarray:
2025-01-07 00:44:57 +01:00
clean_history = self._cap_outliers(history)
return np.full(hours, np.median(clean_history))
2025-01-07 00:44:57 +01:00
2025-01-07 17:26:20 +01:00
def _update_data(
self, force_update: Optional[bool] = False
2025-01-08 23:20:35 +01:00
) -> None: # tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Update forecast data in the ElecPriceDataRecord format.
Retrieves data from Akkudoktor, maps each Akkudoktor field to the corresponding
`ElecPriceDataRecord` and applies any necessary scaling.
The final mapped and processed data is inserted into the sequence as `ElecPriceDataRecord`.
"""
# Get Akkudoktor electricity price data
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
2025-01-07 14:33:10 +01:00
assert self.start_datetime # mypy fix
2025-01-08 17:24:09 +01:00
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
Fix2 config and predictions revamp. (#281) measurement: - Add new measurement class to hold real world measurements. - Handles load meter readings, grid import and export meter readings. - Aggregates load meter readings aka. measurements to total load. - Can import measurements from files, pandas datetime series, pandas datetime dataframes, simple daetime arrays and programmatically. - Maybe expanded to other measurement values. - Should be used for load prediction adaptions by real world measurements. core/coreabc: - Add mixin class to access measurements core/pydantic: - Add pydantic models for pandas datetime series and dataframes. - Add pydantic models for simple datetime array core/dataabc: - Provide DataImport mixin class for generic import handling. Imports from JSON string and files. Imports from pandas datetime dataframes and simple datetime arrays. Signature of import method changed to allow import datetimes to be given programmatically and by data content. - Use pydantic models for datetime series, dataframes, arrays - Validate generic imports by pydantic models - Provide new attributes min_datetime and max_datetime for DataSequence. - Add parameter dropna to drop NAN/ None values when creating lists, pandas series or numpy array from DataSequence. config/config: - Add common settings for the measurement module. predictions/elecpriceakkudoktor: - Use mean values of last 7 days to fill prediction values not provided by akkudoktor.net (only provides 24 values). prediction/loadabc: - Extend the generic prediction keys by 'load_total_adjusted' for load predictions that adjust the predicted total load by measured load values. prediction/loadakkudoktor: - Extend the Akkudoktor load prediction by load adjustment using measured load values. prediction/load_aggregator: - Module removed. Load aggregation is now handled by the measurement module. prediction/load_corrector: - Module removed. Load correction (aka. adjustment of load prediction by measured load energy) is handled by the LoadAkkudoktor prediction and the generic 'load_mean_adjusted' prediction key. prediction/load_forecast: - Module removed. Functionality now completely handled by the LoadAkkudoktor prediction. utils/cacheutil: - Use pydantic. - Fix potential bug in ttl (time to live) duration handling. utils/datetimeutil: - Added missing handling of pendulum.DateTime and pendulum.Duration instances as input. Handled before as datetime.datetime and datetime.timedelta. utils/visualize: - Move main to generate_example_report() for better testing support. server/server: - Added new configuration option server_fastapi_startup_server_fasthtml to make startup of FastHTML server by FastAPI server conditional. server/fastapi_server: - Add APIs for measurements - Improve APIs to provide or take pandas datetime series and datetime dataframes controlled by pydantic model. - Improve APIs to provide or take simple datetime data arrays controlled by pydantic model. - Move fastAPI server API to v1 for new APIs. - Update pre v1 endpoints to use new prediction and measurement capabilities. - Only start FastHTML server if 'server_fastapi_startup_server_fasthtml' config option is set. tests: - Adapt import tests to changed import method signature - Adapt server test to use the v1 API - Extend the dataabc test to test for array generation from data with several data interval scenarios. - Extend the datetimeutil test to also test for correct handling of to_datetime() providing now(). - Adapt LoadAkkudoktor test for new adjustment calculation. - Adapt visualization test to use example report function instead of visualize.py run as process. - Removed test_load_aggregator. Functionality is now tested in test_measurement. - Added tests for measurement module docs: - Remove sphinxcontrib-openapi as it prevents build of documentation. "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema for t in schema["anyOf"]: KeyError: 'anyOf'" Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2024-12-29 18:42:49 +01:00
# Get charges_kwh in wh
charges_wh = (self.config.elecprice.charges_kwh or 0) / 1000
2025-01-07 14:33:10 +01:00
highest_orig_datetime = None # newest datetime from the api after that we want to update.
2025-01-08 17:24:09 +01:00
series_data = pd.Series(dtype=float) # Initialize an empty series
2025-01-07 14:33:10 +01:00
for value in akkudoktor_data.values:
orig_datetime = to_datetime(value.start, in_timezone=self.config.general.timezone)
2025-01-07 14:33:10 +01:00
if highest_orig_datetime is None or orig_datetime > highest_orig_datetime:
highest_orig_datetime = orig_datetime
price_wh = value.marketpriceEurocentPerKWh / (100 * 1000) + charges_wh
2025-01-08 17:24:09 +01:00
# Collect all values into the Pandas Series
series_data.at[orig_datetime] = price_wh
# Update values using key_from_series
self.key_from_series("elecprice_marketprice_wh", series_data)
2025-01-07 14:33:10 +01:00
# Generate history array for prediction
2025-01-08 17:24:09 +01:00
history = self.key_to_array(
key="elecprice_marketprice_wh", end_datetime=highest_orig_datetime, fill_method="linear"
)
2025-01-07 14:33:10 +01:00
amount_datasets = len(self.records)
2025-01-07 14:56:25 +01:00
assert highest_orig_datetime # mypy fix
2025-01-07 18:37:43 +01:00
2025-01-08 23:20:35 +01:00
# some of our data is already in the future, so we need to predict less. If we got less data we increase the prediction hours
needed_hours = int(
self.config.prediction.hours
2025-01-08 23:20:35 +01:00
- ((highest_orig_datetime - self.start_datetime).total_seconds() // 3600)
)
if needed_hours <= 0:
logger.warning(
f"No prediction needed. needed_hours={needed_hours}, hours={self.config.prediction.hours},highest_orig_datetime {highest_orig_datetime}, start_datetime {self.start_datetime}"
) # this might keep data longer than self.start_datetime + self.config.prediction.hours in the records
return
2025-01-08 17:24:09 +01:00
if amount_datasets > 800: # we do the full ets with seasons of 1 week
prediction = self._predict_ets(history, seasonal_periods=168, hours=needed_hours)
2025-01-08 17:24:09 +01:00
elif amount_datasets > 168: # not enough data to do seasons of 1 week, but enough for 1 day
prediction = self._predict_ets(history, seasonal_periods=24, hours=needed_hours)
2025-01-08 17:24:09 +01:00
elif amount_datasets > 0: # not enough data for ets, do median
prediction = self._predict_median(history, hours=needed_hours)
2025-01-07 14:56:25 +01:00
else:
2025-01-08 17:24:09 +01:00
logger.error("No data available for prediction")
raise ValueError("No data available")
2025-01-07 18:37:43 +01:00
# write predictions into the records, update if exist.
2025-01-08 17:24:09 +01:00
prediction_series = pd.Series(
data=prediction,
index=[
highest_orig_datetime + to_duration(f"{i + 1} hours")
for i in range(len(prediction))
],
2025-01-07 14:33:10 +01:00
)
2025-01-08 17:24:09 +01:00
self.key_from_series("elecprice_marketprice_wh", prediction_series)
2025-01-07 14:56:25 +01:00
2025-01-08 17:24:09 +01:00
# history2 = self.key_to_array(key="elecprice_marketprice_wh", fill_method="linear") + 0.0002
# return history, history2, prediction # for debug main
2025-01-07 17:26:20 +01:00
2025-01-08 17:24:09 +01:00
"""
2025-01-07 17:26:20 +01:00
def visualize_predictions(
2025-01-07 18:29:50 +01:00
history: np.ndarray[Any, Any],
history2: np.ndarray[Any, Any],
predictions: np.ndarray[Any, Any],
2025-01-07 17:26:20 +01:00
) -> None:
import matplotlib.pyplot as plt
plt.figure(figsize=(28, 14))
plt.plot(range(len(history)), history, label="History", color="green")
2025-01-07 18:29:50 +01:00
plt.plot(range(len(history2)), history2, label="History_new", color="blue")
2025-01-07 17:26:20 +01:00
plt.plot(
range(len(history), len(history) + len(predictions)),
predictions,
label="Predictions",
color="red",
)
2025-01-08 23:20:35 +01:00
plt.title("Predictions ets")
2025-01-07 17:26:20 +01:00
plt.xlabel("Time")
plt.ylabel("Price")
plt.legend()
plt.savefig("predictions_vs_true.png")
plt.close()
2025-01-07 14:33:10 +01:00
2025-01-08 17:24:09 +01:00
def main() -> None:
2025-01-08 23:20:35 +01:00
# Initialize ElecPriceAkkudoktor with required parameters
2025-01-08 17:24:09 +01:00
elec_price_akkudoktor = ElecPriceAkkudoktor()
history, history2, predictions = elec_price_akkudoktor._update_data()
visualize_predictions(history, history2, predictions)
# print(history, history2, predictions)
2025-01-07 14:33:10 +01:00
if __name__ == "__main__":
main()
2025-01-08 17:24:09 +01:00
"""