EOS/flask_server.py

413 lines
16 KiB
Python
Raw Normal View History

2024-09-10 17:17:49 +02:00
#!/usr/bin/env python3
import os
2024-03-29 08:27:39 +01:00
import matplotlib
2024-10-03 11:05:44 +02:00
matplotlib.use(
"Agg"
) # Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
from datetime import datetime, timedelta
import pandas as pd
from config import *
2024-10-03 11:05:44 +02:00
from flask import Flask, jsonify, redirect, request, send_from_directory, url_for
from modules.class_akku import *
from modules.class_ems import *
from modules.class_heatpump import *
from modules.class_load import *
from modules.class_load_container import *
from modules.class_load_corrector import *
from modules.class_optimize import *
from modules.class_pv_forecast import *
from modules.class_soc_calc import *
from modules.class_sommerzeit import *
from modules.class_strompreis import *
from modules.visualize import *
2024-10-03 11:05:44 +02:00
app = Flask(__name__)
2024-03-28 08:15:17 +01:00
2024-10-03 11:05:44 +02:00
opt_class = optimization_problem(
prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours
)
# @app.route('/last_correction', methods=['GET'])
# def flask_last_correction():
# if request.method == 'GET':
# year_energy = float(request.args.get("year_energy"))
# date_now, date = get_start_enddate(prediction_hours, startdate=datetime.now().date())
# ###############
# # Load Forecast
# ###############
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
# leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[0] # Only the expected value!
#
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
# # ###############
# # Heat Pump (WP)
# # ##############
# # leistung_wp = wp.simulate_24h(temperature_forecast)
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp)
# last = gesamtlast.gesamtlast_berechnen()
# print(last)
# return jsonify(last.tolist())
2024-03-28 08:15:17 +01:00
2024-10-03 11:05:44 +02:00
@app.route("/soc", methods=["GET"])
def flask_soc():
# MariaDB connection details
config = db_config
# Set parameters for SOC (State of Charge) calculation
voltage_high_threshold = 55.4 # 100% SoC
voltage_low_threshold = 46.5 # 0% SoC
current_low_threshold = 2 # Low current threshold for both states
gap = 30 # Time gap in minutes for grouping maxima/minima
bat_capacity = 33 * 1000 / 48 # Battery capacity in watt-hours
# Define the reference time point (3 weeks ago)
2024-10-03 11:05:44 +02:00
zeitpunkt_x = (datetime.now() - timedelta(weeks=3)).strftime("%Y-%m-%d %H:%M:%S")
# Instantiate BatteryDataProcessor and perform calculations
2024-10-03 11:05:44 +02:00
processor = BatteryDataProcessor(
config,
voltage_high_threshold,
voltage_low_threshold,
current_low_threshold,
gap,
bat_capacity,
)
processor.connect_db()
processor.fetch_data(zeitpunkt_x)
processor.process_data()
last_points_100_df, last_points_0_df = processor.find_soc_points()
2024-10-03 11:05:44 +02:00
soc_df, integration_results = processor.calculate_resetting_soc(
last_points_100_df, last_points_0_df
)
# soh_df = processor.calculate_soh(integration_results) # Optional State of Health calculation
processor.update_database_with_soc(soc_df) # Update database with SOC data
# processor.plot_data(last_points_100_df, last_points_0_df, soc_df) # Optional data visualization
processor.disconnect_db() # Disconnect from the database
2024-09-17 14:36:43 +02:00
return jsonify("Done")
2024-10-03 11:05:44 +02:00
@app.route("/strompreis", methods=["GET"])
def flask_strompreis():
# Get the current date and the end date based on prediction hours
2024-10-03 11:05:44 +02:00
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
)
filepath = os.path.join(
r"test_data", r"strompreise_akkudokAPI.json"
) # Adjust the path to the JSON file
price_forecast = HourlyElectricityPriceForecast(
source=f"https://api.akkudoktor.net/prices?start={date_now}&end={date}",
prediction_hours=prediction_hours,
)
specific_date_prices = price_forecast.get_price_for_daterange(
date_now, date
) # Fetch prices for the specified date range
return jsonify(specific_date_prices.tolist())
2024-10-03 11:05:44 +02:00
# Endpoint to handle total load calculation based on the latest measured data
2024-10-03 11:05:44 +02:00
@app.route("/gesamtlast", methods=["POST"])
def flask_gesamtlast():
# Retrieve data from the JSON body
data = request.get_json()
# Extract year_energy and prediction_hours from the request JSON
year_energy = float(data.get("year_energy"))
2024-10-03 11:05:44 +02:00
prediction_hours = int(
data.get("hours", 48)
) # Default to 48 hours if not specified
# Measured data in JSON format
measured_data_json = data.get("measured_data")
measured_data = pd.DataFrame(measured_data_json)
2024-10-03 11:05:44 +02:00
measured_data["time"] = pd.to_datetime(measured_data["time"])
# Ensure datetime has timezone info for accurate calculations
2024-10-03 11:05:44 +02:00
if measured_data["time"].dt.tz is None:
measured_data["time"] = measured_data["time"].dt.tz_localize("Europe/Berlin")
else:
2024-10-03 11:05:44 +02:00
measured_data["time"] = measured_data["time"].dt.tz_convert("Europe/Berlin")
# Remove timezone info after conversion to simplify further processing
2024-10-03 11:05:44 +02:00
measured_data["time"] = measured_data["time"].dt.tz_localize(None)
2024-09-17 14:36:43 +02:00
# Instantiate LoadForecast and generate forecast data
2024-10-03 11:05:44 +02:00
lf = LoadForecast(filepath=r"load_profiles.npz", year_energy=year_energy)
forecast_list = []
2024-10-03 11:05:44 +02:00
# Generate daily forecasts for the date range based on measured data
2024-10-03 11:05:44 +02:00
for single_date in pd.date_range(
measured_data["time"].min().date(), measured_data["time"].max().date()
):
date_str = single_date.strftime("%Y-%m-%d")
daily_forecast = lf.get_daily_stats(date_str)
mean_values = daily_forecast[0]
hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
2024-10-03 11:05:44 +02:00
daily_forecast_df = pd.DataFrame({"time": hours, "Last Pred": mean_values})
forecast_list.append(daily_forecast_df)
# Concatenate all daily forecasts into a single DataFrame
predicted_data = pd.concat(forecast_list, ignore_index=True)
# Create LoadPredictionAdjuster instance to adjust the predictions based on measured data
adjuster = LoadPredictionAdjuster(measured_data, predicted_data, lf)
adjuster.calculate_weighted_mean() # Calculate weighted mean for adjustment
adjuster.adjust_predictions() # Adjust predictions based on measured data
2024-10-03 11:05:44 +02:00
future_predictions = adjuster.predict_next_hours(
prediction_hours
) # Predict future load
# Extract household power predictions
2024-10-03 11:05:44 +02:00
leistung_haushalt = future_predictions["Adjusted Pred"].values
2024-09-17 14:36:43 +02:00
gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
2024-10-03 11:05:44 +02:00
gesamtlast.hinzufuegen(
"Haushalt", leistung_haushalt
) # Add household load to total load calculation
2024-09-17 14:36:43 +02:00
# Calculate the total load
last = gesamtlast.gesamtlast_berechnen() # Compute total load
return jsonify(last.tolist())
2024-10-03 11:05:44 +02:00
# @app.route('/gesamtlast', methods=['GET'])
# def flask_gesamtlast():
# if request.method == 'GET':
# year_energy = float(request.args.get("year_energy")) # Get annual energy value from query parameters
# prediction_hours = int(request.args.get("hours", 48)) # Default to 48 hours if not specified
# date_now = datetime.now() # Get the current date and time
# end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S') # Calculate end date based on prediction hours
# ###############
# # Load Forecast
# ###############
# # Instantiate LastEstimator to retrieve measured data
# estimator = LastEstimator()
# start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d') # Start date: last 60 days
# end_date = date_now.strftime('%Y-%m-%d') # Current date
# last_df = estimator.get_last(start_date, end_date) # Get last load data
# selected_columns = last_df[['timestamp', 'Last']] # Select relevant columns
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') # Floor timestamps to the nearest hour
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') # Convert 'Last' to numeric, coerce errors
# cleaned_data = selected_columns.dropna() # Clean data by dropping NaN values
# # Instantiate LoadForecast
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
# # Generate forecast data
# forecast_list = [] # List to hold daily forecasts
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): # Iterate over date range
# date_str = single_date.strftime('%Y-%m-%d') # Format date
# daily_forecast = lf.get_daily_stats(date_str) # Get daily stats from LoadForecast
# mean_values = daily_forecast[0] # Extract mean values
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] # Generate hours for the day
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) # Create DataFrame for daily forecast
# forecast_list.append(daily_forecast_df) # Append to the list
# forecast_df = pd.concat(forecast_list, ignore_index=True) # Concatenate all daily forecasts
# # Create LoadPredictionAdjuster instance
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
# adjuster.calculate_weighted_mean() # Calculate weighted mean for adjustments
# adjuster.adjust_predictions() # Adjust predictions based on measured data
# # Predict the next hours
# future_predictions = adjuster.predict_next_hours(prediction_hours) # Predict future load
# leistung_haushalt = future_predictions['Adjusted Pred'].values # Extract household power predictions
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours) # Create Gesamtlast instance
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) # Add household load to total load calculation
# # ###############
# # # WP (Heat Pump)
# # ##############
# # leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
# last = gesamtlast.gesamtlast_berechnen() # Calculate total load
# print(last) # Output total load
# return jsonify(last.tolist()) # Return total load as JSON
2024-09-17 14:36:43 +02:00
2024-10-03 11:05:44 +02:00
@app.route("/gesamtlast_simple", methods=["GET"])
2024-09-05 14:20:25 +02:00
def flask_gesamtlast_simple():
2024-10-03 11:05:44 +02:00
if request.method == "GET":
year_energy = float(
request.args.get("year_energy")
) # Get annual energy value from query parameters
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
) # Get the current date and prediction end date
2024-09-05 14:16:43 +02:00
###############
# Load Forecast
###############
2024-10-03 11:05:44 +02:00
lf = LoadForecast(
filepath=r"load_profiles.npz", year_energy=year_energy
) # Instantiate LoadForecast with specified parameters
leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[
0
] # Get expected household load for the date range
gesamtlast = Gesamtlast(
prediction_hours=prediction_hours
) # Create Gesamtlast instance
gesamtlast.hinzufuegen(
"Haushalt", leistung_haushalt
) # Add household load to total load calculation
2024-09-05 14:16:43 +02:00
# ###############
# # WP (Heat Pump)
2024-09-05 14:16:43 +02:00
# ##############
# leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
# gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
last = gesamtlast.gesamtlast_berechnen() # Calculate total load
print(last) # Output total load
return jsonify(last.tolist()) # Return total load as JSON
2024-09-17 14:36:43 +02:00
2024-10-03 11:05:44 +02:00
@app.route("/pvforecast", methods=["GET"])
def flask_pvprognose():
2024-10-03 11:05:44 +02:00
if request.method == "GET":
# Retrieve URL and AC power measurement from query parameters
url = request.args.get("url")
ac_power_measurement = request.args.get("ac_power_measurement")
2024-10-03 11:05:44 +02:00
date_now, date = get_start_enddate(
prediction_hours, startdate=datetime.now().date()
)
2024-09-17 14:36:43 +02:00
###############
# PV Forecast
###############
2024-10-03 11:05:44 +02:00
PVforecast = PVForecast(
prediction_hours=prediction_hours, url=url
) # Instantiate PVForecast with given parameters
if isfloat(
ac_power_measurement
): # Check if the AC power measurement is a valid float
PVforecast.update_ac_power_measurement(
date_time=datetime.now(),
ac_power_measurement=float(ac_power_measurement),
) # Update measurement
# Get PV forecast and temperature forecast for the specified date range
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now, date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now, date)
# Return both forecasts as a JSON response
2024-10-03 11:05:44 +02:00
ret = {
"temperature": temperature_forecast.tolist(),
"pvpower": pv_forecast.tolist(),
}
return jsonify(ret)
2024-10-03 11:05:44 +02:00
@app.route("/optimize", methods=["POST"])
def flask_optimize():
2024-10-03 11:05:44 +02:00
if request.method == "POST":
from datetime import datetime
2024-10-03 11:05:44 +02:00
# Retrieve optimization parameters from the request JSON
2024-03-28 08:15:17 +01:00
parameter = request.json
2024-09-17 14:36:43 +02:00
# Check for required parameters
2024-10-03 11:05:44 +02:00
required_parameters = [
"preis_euro_pro_wh_akku",
"strompreis_euro_pro_wh",
"gesamtlast",
"pv_akku_cap",
"einspeiseverguetung_euro_pro_wh",
"pv_forecast",
"temperature_forecast",
"eauto_min_soc",
"eauto_cap",
"eauto_charge_efficiency",
"eauto_charge_power",
"eauto_soc",
"pv_soc",
"start_solution",
"haushaltsgeraet_dauer",
"haushaltsgeraet_wh",
]
# Identify any missing parameters
missing_params = [p for p in required_parameters if p not in parameter]
if missing_params:
2024-10-03 11:05:44 +02:00
return jsonify(
{"error": f"Missing parameter: {', '.join(missing_params)}"}
), 400 # Return error for missing parameters
2024-09-17 14:36:43 +02:00
# Perform optimization simulation
2024-10-03 11:05:44 +02:00
result = opt_class.optimierung_ems(
parameter=parameter, start_hour=datetime.now().hour
)
2024-03-28 08:15:17 +01:00
return jsonify(result) # Return optimization results as JSON
2024-10-03 11:05:44 +02:00
@app.route("/visualisierungsergebnisse.pdf")
def get_pdf():
# Endpoint to serve the generated PDF with visualization results
2024-10-03 11:05:44 +02:00
return send_from_directory(
"", "visualisierungsergebnisse.pdf"
) # Adjust the directory if needed
2024-03-28 08:15:17 +01:00
@app.route("/site-map")
def site_map():
# Function to generate a site map of valid routes in the application
def print_links(links):
content = "<h1>Valid routes</h1><ul>"
for link in links:
content += f"<li><a href='{link}'>{link}</a></li>"
content += "</ul>"
return content
# Check if the route has no empty parameters
def has_no_empty_params(rule):
defaults = rule.defaults if rule.defaults is not None else ()
arguments = rule.arguments if rule.arguments is not None else ()
return len(defaults) >= len(arguments)
2024-10-03 11:05:44 +02:00
# Collect all valid GET routes without empty parameters
links = []
for rule in app.url_map.iter_rules():
if "GET" in rule.methods and has_no_empty_params(rule):
url = url_for(rule.endpoint, **(rule.defaults or {}))
links.append(url)
2024-10-03 11:05:44 +02:00
return print_links(sorted(links)) # Return the sorted links as HTML
2024-10-03 11:05:44 +02:00
@app.route("/")
def root():
# Redirect the root URL to the site map
return redirect("/site-map", code=302)
2024-03-28 08:15:17 +01:00
2024-10-03 11:05:44 +02:00
if __name__ == "__main__":
2024-09-10 17:17:49 +02:00
try:
# Set host and port from environment variables or defaults
host = os.getenv("FLASK_RUN_HOST", "0.0.0.0")
2024-09-18 09:09:42 +02:00
port = os.getenv("FLASK_RUN_PORT", 8503)
app.run(debug=True, host=host, port=port) # Run the Flask application
except Exception as e:
2024-10-03 11:05:44 +02:00
print(
f"Could not bind to host {host}:{port}. Error: {e}"
) # Error handling for binding issues
2024-03-28 08:15:17 +01:00
# PV Forecast:
# object {
# pvpower: array[48]
# temperature: array[48]
2024-09-10 17:17:49 +02:00
# }