EOS/modules/class_ems.py

160 lines
6.4 KiB
Python
Raw Normal View History

from datetime import datetime
from typing import Dict, List, Optional, Union
2024-10-03 11:05:44 +02:00
import numpy as np
2024-10-03 11:05:44 +02:00
def replace_nan_with_none(
data: Union[np.ndarray, dict, list, float],
) -> Union[List, dict, float, None]:
if data is None:
return None
if isinstance(data, np.ndarray):
# Use numpy vectorized approach
return np.where(np.isnan(data), None, data).tolist()
elif isinstance(data, dict):
return {key: replace_nan_with_none(value) for key, value in data.items()}
elif isinstance(data, list):
return [replace_nan_with_none(element) for element in data]
2024-09-30 10:32:04 +02:00
elif isinstance(data, (float, np.floating)) and np.isnan(data):
return None
else:
return data
2024-02-18 15:07:20 +01:00
2024-02-18 14:32:27 +01:00
class EnergieManagementSystem:
2024-10-03 11:05:44 +02:00
def __init__(
self,
pv_prognose_wh: Optional[np.ndarray] = None,
strompreis_euro_pro_wh: Optional[np.ndarray] = None,
einspeiseverguetung_euro_pro_wh: Optional[np.ndarray] = None,
eauto: Optional[object] = None,
gesamtlast: Optional[np.ndarray] = None,
haushaltsgeraet: Optional[object] = None,
wechselrichter: Optional[object] = None,
2024-10-03 11:05:44 +02:00
):
2024-05-01 14:38:16 +02:00
self.akku = wechselrichter.akku
self.gesamtlast = gesamtlast
2024-02-18 14:32:27 +01:00
self.pv_prognose_wh = pv_prognose_wh
self.strompreis_euro_pro_wh = strompreis_euro_pro_wh
self.einspeiseverguetung_euro_pro_wh = einspeiseverguetung_euro_pro_wh
self.eauto = eauto
self.haushaltsgeraet = haushaltsgeraet
2024-05-01 14:38:16 +02:00
self.wechselrichter = wechselrichter
2024-10-03 11:05:44 +02:00
def set_akku_discharge_hours(self, ds: List[int]) -> None:
2024-02-18 15:53:29 +01:00
self.akku.set_discharge_per_hour(ds)
2024-10-03 11:05:44 +02:00
def set_eauto_charge_hours(self, ds: List[int]) -> None:
self.eauto.set_charge_per_hour(ds)
def set_haushaltsgeraet_start(
self, ds: List[int], global_start_hour: int = 0
) -> None:
2024-10-03 11:05:44 +02:00
self.haushaltsgeraet.set_startzeitpunkt(ds, global_start_hour=global_start_hour)
def reset(self) -> None:
self.eauto.reset()
2024-02-18 15:53:29 +01:00
self.akku.reset()
def simuliere_ab_jetzt(self) -> dict:
jetzt = datetime.now()
start_stunde = jetzt.hour
return self.simuliere(start_stunde)
def simuliere(self, start_stunde: int) -> dict:
# Ensure arrays have the same length
lastkurve_wh = self.gesamtlast
2024-10-03 11:05:44 +02:00
assert (
len(lastkurve_wh)
== len(self.pv_prognose_wh)
== len(self.strompreis_euro_pro_wh)
), f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
# Optimized total hours calculation
ende = len(lastkurve_wh)
2024-10-03 11:05:44 +02:00
total_hours = ende - start_stunde
2024-09-30 10:32:04 +02:00
# Pre-allocate arrays for the results, optimized for speed
last_wh_pro_stunde = np.zeros(total_hours)
netzeinspeisung_wh_pro_stunde = np.zeros(total_hours)
netzbezug_wh_pro_stunde = np.zeros(total_hours)
kosten_euro_pro_stunde = np.zeros(total_hours)
einnahmen_euro_pro_stunde = np.zeros(total_hours)
akku_soc_pro_stunde = np.zeros(total_hours)
eauto_soc_pro_stunde = np.zeros(total_hours)
verluste_wh_pro_stunde = np.zeros(total_hours)
haushaltsgeraet_wh_pro_stunde = np.zeros(total_hours)
# Set initial state
akku_soc_pro_stunde[0] = self.akku.ladezustand_in_prozent()
2024-09-30 10:32:04 +02:00
if self.eauto:
eauto_soc_pro_stunde[0] = self.eauto.ladezustand_in_prozent()
2024-09-30 10:32:04 +02:00
for stunde in range(start_stunde + 1, ende):
2024-10-03 11:05:44 +02:00
stunde_since_now = stunde - start_stunde
2024-09-30 10:32:04 +02:00
# Accumulate loads and PV generation
2024-09-30 10:32:04 +02:00
verbrauch = self.gesamtlast[stunde]
if self.haushaltsgeraet:
ha_load = self.haushaltsgeraet.get_last_fuer_stunde(stunde)
verbrauch += ha_load
haushaltsgeraet_wh_pro_stunde[stunde_since_now] = ha_load
2024-09-30 10:32:04 +02:00
# E-Auto handling
if self.eauto:
2024-10-03 11:05:44 +02:00
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(
None, stunde
)
2024-09-30 10:32:04 +02:00
verbrauch += geladene_menge_eauto
verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
2024-10-03 11:05:44 +02:00
eauto_soc_pro_stunde[stunde_since_now] = (
self.eauto.ladezustand_in_prozent()
)
2024-02-18 15:07:20 +01:00
# Process inverter logic
erzeugung = self.pv_prognose_wh[stunde]
2024-10-03 11:05:44 +02:00
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (
self.wechselrichter.energie_verarbeiten(erzeugung, verbrauch, stunde)
)
2024-09-30 10:32:04 +02:00
netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
verluste_wh_pro_stunde[stunde_since_now] += verluste
2024-10-01 06:51:06 +02:00
last_wh_pro_stunde[stunde_since_now] = verbrauch
# Financial calculations
kosten_euro_pro_stunde[stunde_since_now] = (
netzbezug * self.strompreis_euro_pro_wh[stunde]
)
2024-10-03 11:05:44 +02:00
einnahmen_euro_pro_stunde[stunde_since_now] = (
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh[stunde]
)
2024-09-30 10:32:04 +02:00
# Akku SOC tracking
2024-09-30 10:32:04 +02:00
akku_soc_pro_stunde[stunde_since_now] = self.akku.ladezustand_in_prozent()
# Total cost and return
gesamtkosten_euro = np.sum(kosten_euro_pro_stunde) - np.sum(
2024-10-03 11:05:44 +02:00
einnahmen_euro_pro_stunde
)
# Prepare output dictionary
out: Dict[str, Union[np.ndarray, float]] = {
2024-10-03 11:05:44 +02:00
"Last_Wh_pro_Stunde": last_wh_pro_stunde,
"Netzeinspeisung_Wh_pro_Stunde": netzeinspeisung_wh_pro_stunde,
"Netzbezug_Wh_pro_Stunde": netzbezug_wh_pro_stunde,
"Kosten_Euro_pro_Stunde": kosten_euro_pro_stunde,
"akku_soc_pro_stunde": akku_soc_pro_stunde,
"Einnahmen_Euro_pro_Stunde": einnahmen_euro_pro_stunde,
"Gesamtbilanz_Euro": gesamtkosten_euro,
"E-Auto_SoC_pro_Stunde": eauto_soc_pro_stunde,
"Gesamteinnahmen_Euro": np.sum(einnahmen_euro_pro_stunde),
"Gesamtkosten_Euro": np.sum(kosten_euro_pro_stunde),
2024-09-30 10:32:04 +02:00
"Verluste_Pro_Stunde": verluste_wh_pro_stunde,
"Gesamt_Verluste": np.sum(verluste_wh_pro_stunde),
2024-10-03 11:05:44 +02:00
"Haushaltsgeraet_wh_pro_stunde": haushaltsgeraet_wh_pro_stunde,
2024-02-18 14:32:27 +01:00
}
2024-09-30 10:32:04 +02:00
return replace_nan_with_none(out)