2024-02-18 14:32:27 +01:00
from flask import Flask , jsonify , request
import numpy as np
from datetime import datetime
from modules . class_load import *
from modules . class_ems import *
from modules . class_pv_forecast import *
from modules . class_akku import *
2024-02-18 15:07:20 +01:00
from modules . class_strompreis import *
2024-02-18 21:28:02 +01:00
from modules . class_heatpump import *
2024-03-03 10:03:32 +01:00
from modules . class_load_container import *
2024-03-03 10:46:46 +01:00
from modules . class_eauto import *
2024-02-18 14:32:27 +01:00
from pprint import pprint
2024-02-18 15:07:20 +01:00
import matplotlib . pyplot as plt
from modules . visualize import *
2024-02-18 15:53:29 +01:00
from deap import base , creator , tools , algorithms
import numpy as np
import random
2024-02-18 16:57:57 +01:00
import os
2024-02-18 14:32:27 +01:00
2024-03-25 14:40:48 +01:00
start_hour = 11
2024-03-03 18:32:47 +01:00
prediction_hours = 24
2024-03-03 10:03:32 +01:00
date = ( datetime . now ( ) . date ( ) + timedelta ( hours = prediction_hours ) ) . strftime ( " % Y- % m- %d " )
2024-02-25 16:47:28 +01:00
date_now = datetime . now ( ) . strftime ( " % Y- % m- %d " )
akku_size = 30000 # Wh
2024-02-18 15:07:20 +01:00
year_energy = 2000 * 1000 #Wh
2024-02-25 16:47:28 +01:00
einspeiseverguetung_cent_pro_wh = np . full ( prediction_hours , 7 / ( 1000.0 * 100.0 ) ) # € / Wh
2024-02-18 14:32:27 +01:00
2024-02-25 16:47:28 +01:00
max_heizleistung = 1000 # 5 kW Heizleistung
2024-03-03 10:03:32 +01:00
wp = Waermepumpe ( max_heizleistung , prediction_hours )
2024-02-18 15:53:29 +01:00
2024-02-25 16:47:28 +01:00
akku = PVAkku ( akku_size , prediction_hours )
2024-03-03 18:32:47 +01:00
discharge_array = np . full ( prediction_hours , 1 ) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
2024-03-03 10:46:46 +01:00
2024-03-03 18:32:47 +01:00
laden_moeglich = np . full ( prediction_hours , 1 ) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
#np.full(prediction_hours,1)
2024-03-25 14:40:48 +01:00
eauto = PVAkku ( kapazitaet_wh = 60000 , hours = prediction_hours , lade_effizienz = 0.95 , entlade_effizienz = 1.0 , max_ladeleistung_w = 10000 , start_soc_prozent = 10 )
eauto . set_charge_per_hour ( laden_moeglich )
min_soc_eauto = 80
2024-03-03 18:32:47 +01:00
hohe_strafe = 10.0
2024-03-03 10:46:46 +01:00
2024-03-03 10:03:32 +01:00
#Gesamtlast
#############
gesamtlast = Gesamtlast ( )
2024-02-18 14:32:27 +01:00
# Load Forecast
2024-02-25 15:32:43 +01:00
###############
2024-02-18 14:32:27 +01:00
lf = LoadForecast ( filepath = r ' load_profiles.npz ' , year_energy = year_energy )
2024-02-25 16:47:28 +01:00
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
leistung_haushalt = lf . get_stats_for_date_range ( date_now , date ) [ 0 , . . . ] . flatten ( )
2024-03-03 18:32:47 +01:00
# print(date_now," ",date)
# print(leistung_haushalt.shape)
2024-03-03 10:03:32 +01:00
gesamtlast . hinzufuegen ( " Haushalt " , leistung_haushalt )
2024-02-18 14:32:27 +01:00
# PV Forecast
2024-02-25 15:32:43 +01:00
###############
2024-02-25 15:12:10 +01:00
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
2024-03-08 14:22:11 +01:00
PVforecast = PVForecast ( prediction_hours = prediction_hours , url = " https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe %2F Berlin&hourly=relativehumidity_2m % 2Cwindspeed_10m " )
2024-02-25 16:47:28 +01:00
pv_forecast = PVforecast . get_pv_forecast_for_date_range ( date_now , date ) #get_forecast_for_date(date)
2024-03-08 14:22:11 +01:00
2024-02-25 16:47:28 +01:00
temperature_forecast = PVforecast . get_temperature_for_date_range ( date_now , date )
2024-02-25 15:32:43 +01:00
2024-03-03 10:03:32 +01:00
2024-02-18 15:07:20 +01:00
# Strompreise
2024-02-25 15:32:43 +01:00
###############
filepath = os . path . join ( r ' test_data ' , r ' strompreise_akkudokAPI.json ' ) # Pfad zur JSON-Datei anpassen
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
2024-02-25 16:47:28 +01:00
price_forecast = HourlyElectricityPriceForecast ( source = " https://api.akkudoktor.net/prices?start= " + date_now + " &end= " + date + " " )
specific_date_prices = price_forecast . get_price_for_daterange ( date_now , date )
2024-03-29 08:27:39 +01:00
# print("13:",specific_date_prices[13])
# print("14:",specific_date_prices[14])
# print("15:",specific_date_prices[15])
# sys.exit()
2024-02-18 21:28:02 +01:00
# WP
2024-03-03 10:03:32 +01:00
##############
2024-02-18 21:28:02 +01:00
leistung_wp = wp . simulate_24h ( temperature_forecast )
2024-03-03 10:03:32 +01:00
gesamtlast . hinzufuegen ( " Heatpump " , leistung_wp )
2024-02-25 15:12:10 +01:00
2024-03-03 10:46:46 +01:00
# EAuto
######################
2024-03-25 14:40:48 +01:00
# leistung_eauto = eauto.get_stuendliche_last()
# soc_eauto = eauto.get_stuendlicher_soc()
# gesamtlast.hinzufuegen("eauto", leistung_eauto)
2024-03-03 10:46:46 +01:00
2024-03-03 18:32:47 +01:00
# print(gesamtlast.gesamtlast_berechnen())
2024-02-25 15:12:10 +01:00
2024-02-18 15:07:20 +01:00
# EMS / Stromzähler Bilanz
2024-03-25 14:40:48 +01:00
#akku=None, pv_prognose_wh=None, strompreis_cent_pro_wh=None, einspeiseverguetung_cent_pro_wh=None, eauto=None, gesamtlast=None
2024-03-03 10:03:32 +01:00
2024-03-25 14:40:48 +01:00
ems = EnergieManagementSystem ( akku = akku , gesamtlast = gesamtlast , pv_prognose_wh = pv_forecast , strompreis_cent_pro_wh = specific_date_prices , einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh , eauto = eauto )
2024-03-03 10:03:32 +01:00
2024-03-25 14:40:48 +01:00
o = ems . simuliere ( start_hour ) #ems.simuliere_ab_jetzt()
2024-03-03 18:32:47 +01:00
#pprint(o)
#pprint(o["Gesamtbilanz_Euro"])
2024-03-03 10:03:32 +01:00
2024-03-25 14:40:48 +01:00
#visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,discharge_array,laden_moeglich, temperature_forecast, start_hour, prediction_hours)
2024-03-03 10:03:32 +01:00
2024-02-18 15:53:29 +01:00
# Optimierung
2024-03-04 12:37:47 +01:00
def evaluate_inner ( individual ) :
#print(individual)
discharge_hours_bin = individual [ 0 : : 2 ]
eautocharge_hours_float = individual [ 1 : : 2 ]
#print(discharge_hours_bin)
#print(len(eautocharge_hours_float))
2024-02-18 15:53:29 +01:00
ems . reset ( )
2024-03-25 14:40:48 +01:00
#eauto.reset()
2024-03-04 12:37:47 +01:00
ems . set_akku_discharge_hours ( discharge_hours_bin )
2024-03-25 14:40:48 +01:00
ems . set_eauto_charge_hours ( eautocharge_hours_float )
2024-03-03 18:32:47 +01:00
2024-03-25 14:40:48 +01:00
#eauto.set_laden_moeglich(eautocharge_hours_float)
#eauto.berechne_ladevorgang()
#leistung_eauto = eauto.get_stuendliche_last()
#gesamtlast.hinzufuegen("eauto", leistung_eauto)
2024-03-03 18:32:47 +01:00
2024-03-25 14:40:48 +01:00
#ems.set_gesamtlast(gesamtlast.gesamtlast_berechnen())
o = ems . simuliere ( start_hour )
2024-03-04 12:37:47 +01:00
return o , eauto
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
def evaluate ( individual ) :
o , eauto = evaluate_inner ( individual )
2024-02-18 15:53:29 +01:00
gesamtbilanz = o [ " Gesamtbilanz_Euro " ]
2024-03-03 18:32:47 +01:00
# Überprüfung, ob der Mindest-SoC erreicht wird
2024-03-25 14:40:48 +01:00
final_soc = eauto . ladezustand_in_prozent ( ) # Nimmt den SoC am Ende des Optimierungszeitraums
2024-03-03 18:32:47 +01:00
strafe = 0.0
#if final_soc < min_soc_eauto:
# Fügt eine Strafe hinzu, wenn der Mindest-SoC nicht erreicht wird
strafe = max ( 0 , ( min_soc_eauto - final_soc ) * hohe_strafe ) # `hohe_strafe` ist ein vorher festgelegter Strafwert
2024-03-04 12:37:47 +01:00
gesamtbilanz + = strafe
2024-03-25 14:40:48 +01:00
gesamtbilanz + = o [ " Gesamt_Verluste " ] / 1000.0
2024-02-18 15:53:29 +01:00
return ( gesamtbilanz , )
2024-03-03 18:32:47 +01:00
2024-03-04 12:37:47 +01:00
2024-02-18 15:53:29 +01:00
# Werkzeug-Setup
creator . create ( " FitnessMin " , base . Fitness , weights = ( - 1.0 , ) )
creator . create ( " Individual " , list , fitness = creator . FitnessMin )
toolbox = base . Toolbox ( )
2024-03-04 12:37:47 +01:00
2024-02-18 15:53:29 +01:00
toolbox . register ( " attr_bool " , random . randint , 0 , 1 )
2024-03-04 12:37:47 +01:00
toolbox . register ( " attr_bool " , random . randint , 0 , 1 )
toolbox . register ( " individual " , tools . initCycle , creator . Individual , ( toolbox . attr_bool , toolbox . attr_bool ) , n = prediction_hours )
2024-02-18 15:53:29 +01:00
toolbox . register ( " population " , tools . initRepeat , list , toolbox . individual )
toolbox . register ( " evaluate " , evaluate )
toolbox . register ( " mate " , tools . cxTwoPoint )
toolbox . register ( " mutate " , tools . mutFlipBit , indpb = 0.05 )
toolbox . register ( " select " , tools . selTournament , tournsize = 3 )
# Genetischer Algorithmus
def optimize ( ) :
2024-03-03 18:32:47 +01:00
population = toolbox . population ( n = 500 )
2024-02-18 15:53:29 +01:00
hof = tools . HallOfFame ( 1 )
stats = tools . Statistics ( lambda ind : ind . fitness . values )
stats . register ( " avg " , np . mean )
stats . register ( " min " , np . min )
stats . register ( " max " , np . max )
2024-03-04 12:37:47 +01:00
algorithms . eaMuPlusLambda ( population , toolbox , 50 , 100 , cxpb = 0.5 , mutpb = 0.5 , ngen = 500 , stats = stats , halloffame = hof , verbose = True )
#algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
return hof [ 0 ]
start_solution = optimize ( )
print ( " Start Lösung: " , start_solution )
2024-03-08 14:22:11 +01:00
# # Werkzeug-Setup
# creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
# creator.create("Individual", list, fitness=creator.FitnessMin)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# toolbox = base.Toolbox()
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# toolbox.register("attr_bool", random.randint, 0, 1)
# toolbox.register("attr_float", random.uniform, 0.0, 1.0)
# toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_float), n=prediction_hours)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# start_individual = toolbox.individual()
# start_individual[:] = start_solution
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# toolbox.register("population", tools.initRepeat, list, toolbox.individual)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# toolbox.register("evaluate", evaluate)
# toolbox.register("mate", tools.cxTwoPoint)
# toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
# toolbox.register("select", tools.selTournament, tournsize=3)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# # Genetischer Algorithmus
# def optimize():
# population = toolbox.population(n=1000)
# population[0] = start_individual
# hof = tools.HallOfFame(1)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# stats = tools.Statistics(lambda ind: ind.fitness.values)
# stats.register("avg", np.mean)
# stats.register("min", np.min)
# stats.register("max", np.max)
2024-03-04 12:37:47 +01:00
2024-03-08 14:22:11 +01:00
# algorithms.eaMuPlusLambda(population, toolbox, 100, 200, cxpb=0.5, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
# #algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
# return hof[0]
2024-02-18 15:53:29 +01:00
2024-03-08 14:22:11 +01:00
# best_solution = optimize()
best_solution = start_solution
2024-02-18 15:53:29 +01:00
print ( " Beste Lösung: " , best_solution )
2024-03-03 18:32:47 +01:00
#ems.set_akku_discharge_hours(best_solution)
2024-03-04 12:37:47 +01:00
o , eauto = evaluate_inner ( best_solution )
2024-02-18 14:32:27 +01:00
2024-03-08 14:22:11 +01:00
# soc_eauto = eauto.get_stuendlicher_soc()
# print(soc_eauto)
# pprint(o)
# pprint(eauto.get_stuendlicher_soc())
2024-03-25 14:40:48 +01:00
#visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o,soc_eauto,best_solution[0::2],best_solution[1::2] , temperature_forecast)
visualisiere_ergebnisse ( gesamtlast , pv_forecast , specific_date_prices , o , best_solution [ 0 : : 2 ] , best_solution [ 1 : : 2 ] , temperature_forecast , start_hour , prediction_hours )
2024-02-18 15:07:20 +01:00
2024-02-18 14:32:27 +01:00
# for data in forecast.get_forecast_data():
# print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())for data in forecast.get_forecast_data():
# app = Flask(__name__)
# @app.route('/getdata', methods=['GET'])
# def get_data():
# # Hole das Datum aus den Query-Parametern
# date_str = request.args.get('date')
# year_energy = request.args.get('year_energy')
# try:
# # Konvertiere das Datum in ein datetime-Objekt
# date_obj = datetime.strptime(date_str, '%Y-%m-%d')
# filepath = r'.\load_profiles.npz' # Pfad zur JSON-Datei anpassen
# lf = cl.LoadForecast(filepath=filepath, year_energy=float(year_energy))
# specific_date_prices = lf.get_daily_stats('2024-02-16')
# # Berechne den Tag des Jahres
# #day_of_year = date_obj.timetuple().tm_yday
# # Konvertiere den Tag des Jahres in einen String, falls die Schlüssel als Strings gespeichert sind
# #day_key = int(day_of_year)
# #print(day_key)
# # Überprüfe, ob der Tag im Jahr in den Daten vorhanden ist
# array_list = lf.get_daily_stats(date_str)
# pprint(array_list)
# pprint(array_list.shape)
# if array_list.shape == (2,24):
# #if day_key < len(load_profiles_exp):
# # Konvertiere das Array in eine Liste für die JSON-Antwort
# #((load_profiles_exp_l[day_key]).tolist(),(load_profiles_std_l)[day_key].tolist())
# return jsonify({date_str: array_list.tolist()})
# else:
# return jsonify({"error": "Datum nicht gefunden"}), 404
# except ValueError:
# # Wenn das Datum nicht im richtigen Format ist oder ungültig ist
# return jsonify({"error": "Ungültiges Datum"}), 400
# if __name__ == '__main__':
# app.run(debug=True)